Load Ring for bolting
>VLBG<

Safety instructions
This safety instruction/declaration of the manufacturer has to be kept on file for the whole lifetime of the product.

Translation of the original instructions

Load Ring in pink - for bolting
VLBG

EG-Konformitätserklärung
entsprechend der EG-Maschinenrichtlinie 2006/42/EG, Anhang II A und ihren Änderungen

Hersteller:
RUD Ketten
Rieger & Dietz GmbH u. Co. KG
Friedensinsel
73432 Aalen

Bei einer nicht mit uns abgestimmten Änderung der Maschine verliert diese Erklärung ihre Gültigkeit.

Produktbezeichnung: Lastbock VLBG

Folgende harmonisierten Normen wurden angewandt:
DIN EN 1677-1 : 2009-03
DIN EN ISO 12100 : 2011-03

Folgende nationalen Normen und technische Spezifikationen wurden außerdem angewandt:
BGR 500, KAP 2.8 : 2008-04

Für die Zusammenstellung der Konformitätsdokumentation bevollmächtigte Person:
Michael Betzler, RUD Ketten, 73432 Aalen

Dr.-Ing. Arne Kriegsmann (Prokurist/QMB)
Name, Funktion und Unterschrift Verantwortlicher

EC-Declaration of conformity
According to the EC-Machinery Directive 2006/42/EC, annex II A and amendments

Manufacturer:
RUD Ketten
Rieger & Dietz GmbH u. Co. KG
Friedensinsel
73432 Aalen

We hereby declare that the equipment sold by us because of its design and construction, as mentioned below, corresponds to the appropriate, basic safety and health requirements of the corresponding EC-Machinery Directive 2006/42/EC as well as to the below mentioned harmonized and national norms as well as technical specifications.

In case of any modification of the equipment, not being agreed upon with us, this declaration becomes invalid.

Product name: Load ring VLBG

The following harmonized norms were applied:
DIN EN 1677-1 : 2009-03
DIN EN ISO 12100 : 2011-03

The following national norms and technical specifications were applied:
BGR 500, KAP 2.8 : 2008-04

Authorized person for the configuration of the declaration documents:
Michael Betzler, RUD Ketten, 73432 Aalen

Dr.-Ing. Arne Kriegsmann (Prokurist/QMB)
Name, function and signature of the responsible person
Please read user instruction before initial operation of the bolt-on lifting point VLBG. Make sure that you have comprehended all subjected matters. Non observance can lead to serious personal injuries and material damage and eliminates warranty.

1 Safety instructions

ATTENTION
Wrong assembled or damaged VLBG as well as improper use can lead to injuries of persons and damage of objects when load drops.

Please inspect all VLBG before each use.

• Remove all body parts (fingers, hands, arms, etc.) out of the hazard area (danger of crushing or squeezing) during the lifting process.
• The VLBG must be used only by authorised and trained people in adherence to BGR/DGUV regulations 100-500, Chapter 2.8 and, outside Germany, when observing the relevant specific national regulations.
• The VLBG must be used only by authorised and trained people in adherence to BGR/DGUV regulations 100-500, Chapter 2.8 and, outside Germany, when observing the relevant specific national regulations.
• Do not exceed the working load limit (WLL) indicated on the lifting point.
• VLBG must be rotatable in the screwed tight status through 360 °.
• No technical alterations must be implemented on the VLBG.
• No people may stay in the danger zone.
• Jerky lifting (strong impacts) should be prevented.
• Always ensure a stable position of the load when lifting. Swinging must be prevented.
• Damaged or worn VLBG must never be utilised.

2 Intended use

VLBGs must only be used for the assembly of the load or at load accepting means
Their usage is intended to be used as lifting means.
The VLBGs can also be used as lashing points for the fixture of lashing means.
The VLBGs must only be used in the here described usage purpose.

3 Assembly- and instruction manual

3.1 General information

• Effects of temperature:
 Due to the DIN/EN bolts that are used in the VLBG, the working load limit must be reduced accordingly:
 -40°C to 100°C --> no reduction (-40°F to 212°F)
 100°C to 200°C minus 15 % (212°F to 392°F)
 200°C to 250°C minus 20 % (392°F to 482°F)
 250°C to 350°C minus 25 % (482°F to 662°F)
 Temperatures above 350°C (662°F) are not permitted.

Please observe the maximum usage temperature of the supplied nuts (optionally):
• Clamping nuts according to DIN EN ISO 7042 (DIN 980) must only be used up to +150°C at the max. (302°F).
• Collar nuts according to DIN 6331 can be used up to +300°C. Please note also the reduction factors (572°F).
• RUD-Lifting points must not be used under chemical influences such as acids, alkaline solutions and vapours e.g. in pickling baths or hot dip galvanising plants. If this cannot avoided, please contact the manufacturer indicating the concentration, period of penetration and temperature of use.
• The places where the lifting points are fixed should be marked with colour.
• RUD lifting points are delivered with a 100 % crack tested bolt (length up to lmax please see table 3).
• When using your own bolts, the bolts have to be 100 % crack tested.
 The average notch bar impact test value at the deepest allowed usage temperature must be at least 36 J. This is required in the test fundamentals for lifting points GS MO 15-04 (Point 6.4.1).

HINT
The min. quality of the hexagon bolt has to be 10.9 accord. EN 24014 (DIN 931) with the nominal diameter.

HINT
The dismantling / assembling for the exchange or inspecting of the bolt may only be executed by a competent person (compare with Section 3.4 Dismantling / Assembling the RUD bolt).

Versions

• VLBG lifting points are either supplied with bolts of strength class 10.9 or with „ICE“ material bolts. Original bolts are available as a spare part from RUD.
• The type VLBG 7 t M36 is only delivered with a special bolt, therefore it is not possible to use a DIN/EN-bolt.
RUD supplies the Vario length complete with a washer and crack-detected nut corresponding to DIN EN ISO 7042 (DIN 980) or will be supplied with a crack inspected collar nut acc. to DIN 6331.

If the VLBG is used exclusively for lashing, the value of the working load limit can be doubled.

\[\text{LC} = \text{permissible lashing capacity} = 2 \times \text{WLL} \]

HINT
If the VLBG is or was used as a lashing point, it must not be used for lifting later on!

3.2 Hints for the assembly

Basically essential:

- The material construction to which the lifting point will be attached should be of adequate strength to withstand forces during lifting without deformation. The German testing authority BG, recommends the following minimum for bolt lengths:

 \[
 \begin{align*}
 1 & \times \text{M in steel (minimum quality S235JR [1.0037])} \\
 1.25 & \times \text{M in cast iron (for example GG 25)} \\
 2 & \times \text{M in aluminium alloys} \\
 2.5 & \times \text{M in aluminium-magnesium alloys}
 \end{align*}
 \]

 \(M = \text{diameter of RUD lifting point bolt, for ex. M 20} \)

- When lifting light metals, nonferrous heavy metals and gray cast iron the thread has to be chosen in such a way that the working load limit of the thread corresponds to the requirements of the respective base material.

- The lifting points must be positioned on the load in such a way that movement is avoided during lifting:

 - **For single leg lifts,** the load ring should be positioned vertically above the centre of gravity of the load.
 - **For two leg lifts,** the lifting points must be equidistant to/or above the centre of gravity of the load.
 - **For three and four leg lifts,** the lifting points should be arranged symmetrically around the centre of gravity in the same plane, if possible.

- **Load symmetry:**

 The working load limit of individual RUD lifting points are calculated using the following formula and are based on symmetrical loading:

 \[
 W_{\text{L}} = \frac{G}{n \times \cos \beta}
 \]

 \(W_{\text{L}} = \text{working load limit} \)

 \(G = \text{load weight (kg)} \)

 \(n = \text{number of load bearing legs} \)

 \(\beta = \text{angle of inclination of the chain to the vertical} \)

 The calculation of load bearing legs is as follows:

<table>
<thead>
<tr>
<th></th>
<th>symmetrical</th>
<th>asymmetrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>two leg</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>three / four leg</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

 table 1: Load bearing strands (see table 2)

HINT
With unsymmetrical loads, the WLL of each Lifting Point must be at least as high as the weight of the load.

- A plane bolt-on surface (ØD, table 3) with a perpendicular thread hole must be guaranteed. The thread must be carried out acc. to DIN 76 (countersink max. 1.05xd)

- Tapped holes must be machined deep enough so that the bearing surface of the lifting point will be supported. Machine through holes up to DIN EN 20273-middle.

- The VLBG must be rotatable 360° when installed. Please observe the following:

 - For a **single use** hand tightening with a spanner is sufficient. Bolt supporting area must sit proper on bolt-on surface.

 - For **long term application** the VLBG must be tightened with torque according to table 3 (+/- 10 %).

- When turning loads using the VLBG (see chapter 3.3.2 permissible lifting- and turning process) it is necessary to tighten the bolt with a torque (+/- 10 %) acc. to chart 3.

- With shock loading or vibrations, especially at through hole fixtures with a nut at the end of the bolt, accidental release can occur.

 Securing possibilities: Observe torque moment, use liquid securing glue f.e. Loctite (can be adapted to the usage, observe manufacturer hints) or assemble a form closure bolt locking device f.e. a castle nut with cotter pin, locknut etc.

- Finally check the proper assembly (see chapter 4 **Inspection / repair**).

3.3 User instructions

3.3.1 General information for the usage

- Always regularly observe the appearance of the whole lifting point (e.g. fixed lifting point/slings) before using it (secured bolt seat, strong corrosion, cracks on load-bearing parts, deformations). Refer to chapter 4 **Inspection / repair**.

ATTENTION
Wrong assembled or damaged VLBG as well as improper use can lead to injuries of persons and damage of objects when load drops.

Please inspect all VLBG before each use.
• RUD components are designed according to DIN EN 818 and DIN EN 1677 for a dynamic load of 20,000 load cycles.
• Keep in mind that several load cycles can occur with a lifting procedure
• Keep in mind that, due to the high dynamic stress with high numbers of load cycles, there is a danger that the product will be damaged
• The BG/DGUV recommends: For higher dynamic loading with a high number of load cycles (continuous operation), the working load stress must be reduced according to the driving mechanism group 1Bm (M3 in accordance with DIN EN 818-7). Use a lifting point with a higher working load limit.

• When attaching and removing the lifting means (e.g. lifting chains), crushing, shearing, trapping and impact spots must be prevented.
• Prevent damage being caused to the lifting means by loading at sharp edged.
• Set the suspension ring of the VLBG in the direction of force before attaching the lifting means.

Pic. 1: Forbidden loading direction

• Keep in mind that the lifting means in the VLBG must be freely movable.

Pic. 2: Use only suitable lifting means for hanging or hooking into the VLBG

Pic. 3: The load must move freely and must not be loaded at edges

• Always completely engage the lifting point.

Pic. 4: The lifting point must be completely screwed in.

3.3.2 Allowed lifting and turning operations

• A bending load of the suspension ring is not permitted!

Pic. 5: Possible turning operation with the VLBG
The following turning operations are allowed

- Turning operations where the load ring will be turned into the load direction

WARNING
The load ring must not support itself at edges or other attachments. Also the attached lifting mean must not touch the head of the bolt.

Pic. 6: Pivoting in load direction

- Turning operations where the VLBG will be turned around the bolt axle (exception: see chapter 3.3.3 Forbidden lifting and turning operations). After a full turn by 180° the torque of the bolt must be checked.

WARNING
Observe the requested torque value before each lifting or turning operation.

Pic. 7: Forbidden turning direction at loading in the direction of the axle.

3.3.3 Forbidden lifting and turning operations

The following operations are forbidden:

WARNING
The turning of the VLBG under load in the direction of the bolt axle (+15°) is forbidden.

Pic. 8: Dismantling position of the VLBG

3.4 Dismantling / Assembling the RUD bolt

HINT
The dismantling / assembling and/or the exchange of the RUD bolt must only be executed by a competent person!

3.4.1 Dismantling the bolt of the VLBG M8-M48 / 3/8“ - 2“

1. Position VLBG with the thread end upwards at the bushing on the top of the bench vice without clamping the hexagon head of the bolt.
2. Slightly hit the bolt from the top to drive it out from the bushing (Pic. 8).

Pic. 8: Dismantling position of the VLBG

3.4.2 Assembling the bolt of the VLBG M8-M10 / 3/8“

HINT
Only the appropriate strength class of bolt for each specific size must be used!

1. Insert the bolt into the drill hole in the socket until the retaining ring is positioned on the socket
2. Squeeze the retaining ring together with flat pliers so that it sits deeply in the groove of the nut.
3. Now insert the bolt with light hits with a hammer fully into the socket.
4. Finally, control the tightness of the bolt. The bolt must be easily rotatable by 360°.
3.4.3 Assembling the bolt for VLBG M12-M48 / 1/2" - 2"

HINT
Only the stated strength of class for the respective size of the bolts must be used!

1. Insert the bolt into the bushing at the tapered end, where the chamfer is (refer to Pic. 9).

Pic. 9: VLBG in sectional view. The insertion chamfer is visible on top of the bushing

2. Insert the bolt into the socket in such a way that the retaining ring is circumferential deepened in the socket and seated (refer to Pic. 10).

TIP
Turn the bolt a few times under slight pressure so that it is centered in the retaining ring!

Pic. 10: Retaining ring positioned as circumferential in the recess

3. Use a light tap on the head of the bolt so that the bolt can be assembled up to the end stop of the bolt head on the socket.

4. Finally, control the tightness and seating of the bolt. The bolt must be easily rotatable by 360°.

4.2 Test criteria for the regular visual inspection by the user

• Correct bolt sizes and nut sizes, bolt quality and screw-in lengths
• Always observe tightness of the bolts → inspect the torque
• Comprehensive, legible load-bearing information as well as the manufacturer’s identification mark.
• Deformations on load-bearing parts such as basic body, hanging or hooking in suspension ring and bolt
• Mechanical damage such as significant notches, particularly in areas subject to tensile stress.
• Easy rotation of the VLBG must be ensured

4.3 Additional test criteria for the competent person / repair worker

• Cross-section alterations caused by wear > 10 %.
• Strong corrosion
• Cracks on load-bearing parts
• Function of and damage to the bolts, nut as well as the screw thread (disassembly / assembly of the bolt see section 3.4).
• Further checks may be required, depending on the result of the risk assessment (e.g. testing for cracks in load-bearing parts).

4 Inspection / repair

4.1 Hints for periodical inspections

The operator must determine and specify the nature and scope of the required tests as well as the periods of repeating tests by means of a risk assessment (see sections 4.2 and 4.3).

The continuing suitability of the anchor point must be checked at least 1x year by an expert.

Depending on the usage conditions, f.e. frequent usage, increased wear or corrosion, it might be necessary to check in shorter periods than one year. The inspection has also to be carried out after accidents and special incidents.
<table>
<thead>
<tr>
<th>Method of lift</th>
<th>Number of legs</th>
<th>Angle of inclination <β</th>
<th>Factor</th>
<th>Type</th>
<th>WLL in metric tons, bolted and adjusted in the direction of pull</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0°</td>
<td>1</td>
<td>Thread</td>
<td>VLBG 0.3 t M 8 0.3 0.6 0.6 0.42 0.3 0.3 0.63 0.45 0.3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90°</td>
<td>1</td>
<td>M 10</td>
<td>0.63 1.26 1.26 0.88 0.63 0.63 1.32 0.95 0.63</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0°</td>
<td>1</td>
<td>M 12</td>
<td>1.22 2.4 2.4 1.68 1.2 1.2 2.52 1.8 1.2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90°</td>
<td>1</td>
<td>M 14</td>
<td>1.5 1.5 3 2.1 1.5 1.5 3.15 2.25 1.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0-45°</td>
<td>1</td>
<td>M 16</td>
<td>2 2 4 2.8 2 2 4.2 3 2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>45-60°</td>
<td>1</td>
<td>M 18</td>
<td>2.5 2.5 5 3.5 2.5 2.5 5.25 3.75 2.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Unsymm.</td>
<td>1</td>
<td>M 20</td>
<td>2,1 1,5 1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0-45°</td>
<td>1</td>
<td>M 22</td>
<td>2 2 4 2.8 2 2 4.2 3 2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>45-60°</td>
<td>1</td>
<td>M 24</td>
<td>2,5 2,5 5 3.5 2.5 2.5 5.25 3.75 2.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Unsymm.</td>
<td>1</td>
<td>M 27</td>
<td>2 2 4 2.8 2 2 4.2 3 2</td>
</tr>
<tr>
<td></td>
<td>3 / 4</td>
<td>0°</td>
<td>1</td>
<td>M 30</td>
<td>2 2 4 2.8 2 2 4.2 3 2</td>
</tr>
<tr>
<td></td>
<td>3 / 4</td>
<td>90°</td>
<td>1</td>
<td>M 36</td>
<td>2,5 2,5 5 3.5 2.5 2.5 5.25 3.75 2.5</td>
</tr>
<tr>
<td></td>
<td>3 / 4</td>
<td>0-45°</td>
<td>1</td>
<td>M 42</td>
<td>2 2 4 2.8 2 2 4.2 3 2</td>
</tr>
<tr>
<td></td>
<td>3 / 4</td>
<td>>45-60°</td>
<td>1</td>
<td>M 48</td>
<td>2,5 2,5 5 3.5 2.5 2.5 5.25 3.75 2.5</td>
</tr>
<tr>
<td></td>
<td>3 / 4</td>
<td>Unsymm.</td>
<td>1</td>
<td>M 55</td>
<td>2 2 4 2.8 2 2 4.2 3 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Thread</th>
<th>WLL in lbs, bolted and adjusted in the direction of pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLBG 0.3 t M 8</td>
<td>660 660 1320 1320 925 660 660 1400 990 660</td>
<td></td>
</tr>
<tr>
<td>VLBG 0.63 t M 10 / 3/8”</td>
<td>1400 1400 2800 2800 1940 1400 1400 2910 2080 1400</td>
<td></td>
</tr>
<tr>
<td>VLBG 1 t M 12 / 1/2”</td>
<td>2200 2200 4400 4400 3080 2200 2200 4620 3300 2200</td>
<td></td>
</tr>
<tr>
<td>VLBG 1.2 t M 14</td>
<td>2640 2640 5280 5280 3700 2640 2640 5545 3960 2640</td>
<td></td>
</tr>
<tr>
<td>VLBG 1.5 t M 16 / 5/8”</td>
<td>3300 3300 6600 6600 4620 3300 3300 6930 4950 3300</td>
<td></td>
</tr>
<tr>
<td>VLBG 2 t M 18</td>
<td>4400 4400 8800 8800 6160 4400 4400 9250 6600 4400</td>
<td></td>
</tr>
<tr>
<td>VLBG 2.5 t M 20 / 3/4” / 7/8”</td>
<td>5500 5500 11000 11000 7700 5500 5500 11550 8250 5500</td>
<td></td>
</tr>
<tr>
<td>VLBG 2.5 t M 22</td>
<td>5500 5500 11000 11000 7700 5500 5500 11550 8250 5500</td>
<td></td>
</tr>
<tr>
<td>VLBG 4 t M 24 / M 27 / 1”</td>
<td>8800 8800 17600 17600 12320 8800 8800 18480 13200 8800</td>
<td></td>
</tr>
<tr>
<td>VLBG 5 t M 30 / 1 1/4”</td>
<td>11000 11000 22000 22000 15400 11000 11000 23100 16500 11000</td>
<td></td>
</tr>
<tr>
<td>VLBG 7 t M 36</td>
<td>15400 15400 30800 30800 21500 15400 15400 32350 23100 15400</td>
<td></td>
</tr>
<tr>
<td>VLBG 8 t M 36 / 1 1/2”</td>
<td>17600 17600 35200 35200 24640 17600 17600 36960 26400 17600</td>
<td></td>
</tr>
<tr>
<td>VLBG 10 t M 42</td>
<td>22000 22000 44000 44000 30800 22000 22000 46200 33000 22000</td>
<td></td>
</tr>
<tr>
<td>VLBG 15 t M 42</td>
<td>33000 33000 66000 66000 46200 33000 33000 69300 49500 33000</td>
<td></td>
</tr>
<tr>
<td>VLBG 20 t M 48 / 2”</td>
<td>44000 44000 88000 88000 61600 44000 44000 92400 66000 44000</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: WLL in tons (above / top) and in lbs (below / bottom)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VLBG 0.3 t</td>
<td>0.3</td>
<td>0.3</td>
<td>30</td>
<td>54</td>
<td>34</td>
<td>24</td>
<td>39</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>76</td>
<td>75</td>
<td>45</td>
<td>45</td>
<td>105</td>
<td>8</td>
<td>32</td>
<td>13</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>VLBG 0.63 t</td>
<td>0.63</td>
<td>0.32</td>
<td>30</td>
<td>54</td>
<td>34</td>
<td>24</td>
<td>39</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>76</td>
<td>75</td>
<td>45</td>
<td>44</td>
<td>125</td>
<td>10</td>
<td>32</td>
<td>17</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>VLBG 1 t</td>
<td>1</td>
<td>0.33</td>
<td>32</td>
<td>54</td>
<td>34</td>
<td>26</td>
<td>38</td>
<td>12</td>
<td>29</td>
<td>19</td>
<td>85</td>
<td>76</td>
<td>45</td>
<td>47</td>
<td>145</td>
<td>12</td>
<td>32</td>
<td>19</td>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td>VLBG 1.2 t</td>
<td>1.2</td>
<td>0.52</td>
<td>33</td>
<td>56</td>
<td>38</td>
<td>30</td>
<td>39</td>
<td>13.5</td>
<td>38</td>
<td>21</td>
<td>34</td>
<td>86</td>
<td>47</td>
<td>57</td>
<td>10</td>
<td>70</td>
<td>16</td>
<td>33</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>VLBG 1.5 t</td>
<td>1.5</td>
<td>0.55</td>
<td>33</td>
<td>56</td>
<td>38</td>
<td>30</td>
<td>39</td>
<td>13.5</td>
<td>36</td>
<td>21</td>
<td>34</td>
<td>86</td>
<td>47</td>
<td>57</td>
<td>185</td>
<td>16</td>
<td>38</td>
<td>19</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>VLBG 2.0 t</td>
<td>2</td>
<td>1.3</td>
<td>50</td>
<td>82</td>
<td>54</td>
<td>45</td>
<td>45</td>
<td>16.5</td>
<td>43</td>
<td>27</td>
<td>47</td>
<td>113</td>
<td>64</td>
<td>70</td>
<td>90</td>
<td>19</td>
<td>48</td>
<td>30</td>
<td>12</td>
<td>110</td>
</tr>
<tr>
<td>VLBG 2.5 t</td>
<td>2.5</td>
<td>1.3</td>
<td>50</td>
<td>82</td>
<td>54</td>
<td>45</td>
<td>45</td>
<td>16.5</td>
<td>43</td>
<td>32</td>
<td>187</td>
<td>113</td>
<td>64</td>
<td>75</td>
<td>90</td>
<td>20</td>
<td>100</td>
<td>38</td>
<td>55</td>
<td>110</td>
</tr>
<tr>
<td>VLBG 2.5 t</td>
<td>2.5</td>
<td>1.31</td>
<td>50</td>
<td>82</td>
<td>54</td>
<td>45</td>
<td>45</td>
<td>16.5</td>
<td>43</td>
<td>-</td>
<td>57</td>
<td>113</td>
<td>64</td>
<td>-</td>
<td>100</td>
<td>22</td>
<td>48</td>
<td>30</td>
<td>-</td>
<td>110</td>
</tr>
<tr>
<td>VLBG 4 t</td>
<td>4</td>
<td>1.5</td>
<td>50</td>
<td>82</td>
<td>54</td>
<td>45</td>
<td>45</td>
<td>16.5</td>
<td>43</td>
<td>18</td>
<td>222</td>
<td>130</td>
<td>78</td>
<td>80</td>
<td>265</td>
<td>24</td>
<td>48</td>
<td>36</td>
<td>14</td>
<td>125</td>
</tr>
<tr>
<td>VLBG 4 t</td>
<td>4</td>
<td>3.1</td>
<td>60</td>
<td>103</td>
<td>65</td>
<td>60</td>
<td>66</td>
<td>22.5</td>
<td>61</td>
<td>39</td>
<td>239</td>
<td>151</td>
<td>80</td>
<td>100</td>
<td>300</td>
<td>27</td>
<td>67</td>
<td>41</td>
<td>17</td>
<td>147</td>
</tr>
<tr>
<td>VLBG 5 t</td>
<td>5</td>
<td>3.3</td>
<td>60</td>
<td>103</td>
<td>65</td>
<td>60</td>
<td>67</td>
<td>22.5</td>
<td>61</td>
<td>49</td>
<td>279</td>
<td>151</td>
<td>80</td>
<td>110</td>
<td>340</td>
<td>30</td>
<td>67</td>
<td>46</td>
<td>17</td>
<td>147</td>
</tr>
<tr>
<td>VLBG 5 t</td>
<td>5</td>
<td>3.4</td>
<td>60</td>
<td>103</td>
<td>65</td>
<td>60</td>
<td>74</td>
<td>22.5</td>
<td>66</td>
<td>-</td>
<td>55</td>
<td>151</td>
<td>80</td>
<td>107</td>
<td>36</td>
<td>67</td>
<td>55</td>
<td>-</td>
<td>146</td>
<td>700 Nm</td>
</tr>
<tr>
<td>VLBG 8 t</td>
<td>8</td>
<td>6.2</td>
<td>77</td>
<td>122</td>
<td>82</td>
<td>70</td>
<td>97</td>
<td>26.5</td>
<td>77</td>
<td>63</td>
<td>223</td>
<td>205</td>
<td>110</td>
<td>140</td>
<td>300</td>
<td>140</td>
<td>36</td>
<td>55</td>
<td>22</td>
<td>197</td>
</tr>
<tr>
<td>VLBG 10 t</td>
<td>10</td>
<td>6.7</td>
<td>77</td>
<td>122</td>
<td>82</td>
<td>70</td>
<td>94</td>
<td>28.5</td>
<td>77</td>
<td>73</td>
<td>273</td>
<td>205</td>
<td>110</td>
<td>150</td>
<td>350</td>
<td>42</td>
<td>70</td>
<td>65</td>
<td>24</td>
<td>197</td>
</tr>
<tr>
<td>VLBG 15 t</td>
<td>15</td>
<td>11.2</td>
<td>95</td>
<td>156</td>
<td>100</td>
<td>85</td>
<td>109</td>
<td>36</td>
<td>87</td>
<td>63</td>
<td>413</td>
<td>230</td>
<td>130</td>
<td>150</td>
<td>500</td>
<td>42</td>
<td>100</td>
<td>65</td>
<td>24*</td>
<td>222</td>
</tr>
<tr>
<td>VLBG 20 t</td>
<td>20</td>
<td>11.6</td>
<td>95</td>
<td>156</td>
<td>100</td>
<td>95</td>
<td>105</td>
<td>36</td>
<td>87</td>
<td>73</td>
<td>303</td>
<td>230</td>
<td>130</td>
<td>160</td>
<td>350</td>
<td>48</td>
<td>100</td>
<td>75</td>
<td>27</td>
<td>222</td>
</tr>
<tr>
<td>LBG (3) M16 RS 11</td>
<td>1 1.1</td>
<td>50</td>
<td>85</td>
<td>50 - 43</td>
<td>16.5</td>
<td>38</td>
<td>25</td>
<td>- 95</td>
<td>45</td>
<td>63</td>
<td>- 16</td>
<td>45</td>
<td>24</td>
<td>- 88</td>
<td>100 Nm</td>
<td>62086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBG (3) M20 RS 21</td>
<td>2 1.2</td>
<td>50</td>
<td>85</td>
<td>50 - 42</td>
<td>16.5</td>
<td>38</td>
<td>27</td>
<td>- 95</td>
<td>45</td>
<td>65</td>
<td>- 20</td>
<td>45</td>
<td>30</td>
<td>- 88</td>
<td>200 Nm</td>
<td>62813</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attention: the stainless load ring is not suitable for use in chloride media (e.g. indoor swimming-pools)

table 3: Dimensioning

- *from length L= 351mm there is no internal hexagon*
- SW = wrench size | ISK = internal hexagon

Attention: the stainless load ring is not suitable for use in chloride media (e.g. indoor swimming-pools).